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ABSTRACT

The main objective of the current article is to present a fast and reli-
able algorithm for evaluating n-th order k-tridiagonal determinants with
Toeplitz structure. Additionally, a modified algorithm for evaluating the
general n-th order k-tridiagonal determinants is proposed. Numerical
tests and illustrative examples are also given.
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1. Introduction

The general tridiagonal matrix Tn = [tij ]
n
i,j=1 in which tij = 0 for |i−j| > 1

can be written in the form:

Tn =



d1 a1 0 ... 0

b1 d2 a2
. . .

...

0
. . . . . . . . . 0

...
. . . bn−2 dn−1 an−1

0 . . . 0 bn−1 dn


. (1)

Tridiagonal matrices frequently appear in a variety of applications such as par-
allel computing, cubic spline interpolation, telecommunication system analysis,
and in numerous other fields of science and engineering. In many of these ar-
eas the evaluation of tridiagonal determinants is required. There has been a
considerable amount of work concerning tridiagonal matrices of the form (1).
The interested reader may refer to, for example, the references Aiat and Elouafi
(2008), El-Mikkawy (2004b), El-Mikkawy and Atlan (2014a), El-Mikkawy and
Karawia (2006), El-Mikkawy and Rahmo (2008), Huang and McColl (1997),
Kilic (2008a), Lewis (1982), Mallik (2001), Ran et al. (2009), Yamamoto (2001)
and the references therein.
A general n×n tridiagonal matrix of the form (1) can be stored in 3n−2 memory
locations, rather than n2 memory locations for a full matrix, by using three
vectors a = [a1, a2, . . . , an−1], b = [b1, b2, . . . , bn−1] and d = [d1, d2, . . . , dn].
This is always a good habit in computation in order to save memory space. To
study tridiagonal matrices it is very convenient to introduce a vector e in the
following way El-Mikkawy (2004a):

e = [e1, e2, ..., en], (2)

where
e1 = d1, ei = di −

bi−1 ai−1

ei−1
, i = 2, 3, ..., n. (3)

Consider the n× n matrix, Tn defined in (1). Denote by:

f1 = |d1| = d1, fi =

∣∣∣∣∣∣∣∣∣∣∣∣∣

d1 a1 0 ... 0

b1 d2 a2
. . .

...

0
. . . . . . . . . 0

...
. . . bi−2 di−1 ai−1

0 . . . 0 bi−1 di

∣∣∣∣∣∣∣∣∣∣∣∣∣
, i = 2, 3, ..., n. (4)
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It is known that El-Mikkawy (2003), Hager (1988) the determinants in (4)
satisfy a three-term recurrence:

fi = di fi−1 − bi−1ai−1 fi−2, i = 1, 2, . . . , n, (5)

where the initial values for fi are f−1 = 0 and f0 = 1. In particular, we have:

det(Tn) = fn. (6)

In El-Mikkawy (2004a), the author developed a symbolic algorithm, called
DETGTRI to compute general n-th order tridiagonal determinants in linear
time. A more general tridiagonal matrix is the k-tridiagonal matrix T

(k)
n =

[t̂ij ]
n
i,j=1 which can be written in the form:

T (k)
n = [t̂ij ]

n
i,j=1 =



d1 0 . . . 0 a1 0 . . . 0

0 d2 0 . . . 0 a2
. . .

...
... 0

. . . . . . . . .
. . . . . . 0

0 . . .
. . . . . . . . . . . .

. . . an−k

b1 0 . . .
. . . . . . . . . . . . 0

0 b2
. . . . . .

. . . . . . 0
...

...
. . . . . . . . . . . . 0 dn−1 0

0 . . . 0 bn−k 0 . . . 0 dn


, n ≥ 3.

(7)
These kind of matrices have attracted much attention in recent years. For the
matrix T (k)

n in (7), t̂ij = 0 for all i, j = 1, 2, ..., n except for |i − j| = 0 or k,
where k ∈ {1, 2, ..., n − 1}. For k ≥ n, the matrix T

(k)
n is a diagonal matrix

and T (1)
n = Tn. The k-tridiagonal matrix plays an important role in describing

generalized k-Fibonacci numbers El-Mikkawy and Sogabe (2010), Sogabe and
El-Mikkawy (2011), Yilmaz and Sogabe (2014). The symbolic algorithm, k-
DETGTRI in El-Mikkawy (2012) can be used to compute the determinant
of the matrix in (7) in linear time. It is a generalization of the DETGTRI
algorithm in El-Mikkawy (2004a). For related work, see Asci et al. (2012), El-
Mikkawy and Atlan (2014a,b), Jia et al. (2013), Sogabe and El-Mikkawy (2011),
Yalciner (2011), Yilmaz and Sogabe (2014). When we consider matrices of the
form (7) there is no need to store the zero elements. The nonzero elements of
the matrix can be stored in 3n − 2k memory locations by using three vectors
a = [a1, a2, . . . , an−k], b = [b1, b2, . . . , bn−k] and d = [d1, d2, . . . , dn]. To study
k-tridiagonal matrices it is advantageous to introduce an n-component vector
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c = [c1, c2, ..., cn] whose components are given by:

ci =

{
di, if i = 1, 2, ..., k

di − bi−k ai−k

ci−k
, if i = k + 1, k + 2, ..., n.

(8)

With the help of the vector c in (8), we may formulate the following basic result
whose proof may be found in Asci et al. (2012), Burden and Faires (2001),
El-Mikkawy (2012).

Theorem 1.1. Let T (k)
n be a k-tridiagonal matrix in (7) for which ci 6= 0, for i =

1, 2, ..., n. Then the Doolittle LU factorization of T (k)
n is given by:

T (k)
n = L(k)

n U (k)
n , (9)

where

L(k)
n =



1 0 . . . . . . 0

0 1
. . .

...
... 0

. . . . . .

0
...

. . . . . . . . .
b1
c1

. . .
...

. . . . . . . . .

0 b2
c2

. . . . . .
. . . . . . . . .

...
...

. . . . . . . . . . . . 0
. . . 0

0 . . . 0 bn−k

cn−k
0 . . . 0 1



,

U (k)
n =



c1 0 . . . 0 a1 0 . . . 0

0 c2 0 . . . 0 a2
. . .

...
... 0

. . . . . . . . .
. . . . . . 0

. . . . . . . . . . . .
. . . an−k

. . . . . . . . . . . . 0
. . . . . . 0

...
...

. . . cn−1 0
0 . . . . . . 0 cn


,

(10)

and

det(T (k)
n ) =

n∏
i=1

ci, (11)

where c1, c2, ..., cn are given by (8).
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The evaluation of n-th order k-tridiagonal determinant has been considered
by some authors for the special case k = 2. See for instance Borowska et al.
(2013) and Kilic (2008b). To the best of our knowledge there is no closed form
determinant for n-th order k-tridiagonal determinants in the literature. The
subject of the current paper is therefore to consider a closed-form determinants
of k-tridiagonal matrices having Toeplitz structure. Also the modification of a
recent algorithm for evaluating the general k-tridiagonal determinants Sogabe
and Yilmaz (2014) will be taken into account.
The paper is organized as follows. The main results are given in the next
section. In Section 3, a modified algorithm for evaluating the general n-th
order k-tridiagonal determinants is proposed. Some illustrative examples are
given in Section 4. Some concluding remarks are presented in Section 5.

2. Main Results

In this section we are going to evaluate the determinants of k-tridiagonal
Toeplitz matrices in (7) for which, di = d, i = 1, 2, ...n, ai = a and bi = b, i =
1, 2, ...n− k.

Theorem 2.1. Consider the k-tridiagonal matrix of Toeplitz structure T (k)
n (b, d, a)

defined by:

T (k)
n (b, d, a) =



d 0 . . . 0 a 0 . . . 0

0 d 0 . . . 0 a
. . .

...
... 0

. . . . . . . . .
. . . . . . 0

0 . . .
. . . . . . . . . . . .

. . . a

b 0 . . .
. . . . . . . . . . . . 0

0 b
. . . . . .

. . . . . . 0
...

...
. . . . . . . . . . . . 0 d 0

0 . . . 0 b 0 . . . 0 d


. (12)

If n = mk + r, r = 0, 1, 2, ..., k − 1, then we have

det(T (k)
n (b, d, a)) =

[
det(Tm+1(b, d, a))

]r[
det(Tm(b, d, a))

]k−r
. (13)
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Proof. By using (11), we have

det(T (k)
n (b, d, a)) =

n∏
p=1

cp, (14)

where

c1 = c2 = ... = ck = d

and

ci = d− a b

ci−k
, i = k + 1, k + 2, ..., n.

(15)

At this point let us consider the following second order linear homogeneous
difference equation El-Mikkawy (2003), Hager (1988):

ui = d ui−1 − b a ui−2, i = 1, 2, . . . , n, (16)

where the initial values for ui are u−1 = 0 and u0 = 1.
Since n = mk + r, r = 0, 1, ..., k − 1 the values of c1, c2, ..., cn in (15) are now
given by:

c1 = c2 = ... = ck = d
1 = u1

u0
,

ck+1 = ck+2 = ... = c2k = d− ab
c1

= d− ab
u1
u0

= du1−ab u0

u1
= u2

u1
,

c2k+1 = c2k+2 = ... = c3k = d− ab
ck+1

= d− ab
u2
u1

= du2−ab u1

u2
= u3

u2
,

...
c(m−1)k+1 = c(m−1)k+2 = ... = cmk = d− ab

c(m−2)k+1
= d− ab

um−1
um−2

= dum−1−ab um−2

um−1
= um

um−1
,

cmk+1 = cmk+2 = ... = cmk+r = d− ab
c(m−1)k+1

= d− ab
um

um−1

= dum−ab um−1

um
= um+1

um
,

.

(17)
having used (16). By using (17) into (14), we obtain

det(T (k)
n (b, d, a)) =

n∏
p=1

cp =

mk+r∏
p=1

cp =

[
c1 c2 ...ck

][
ck+1 ck+2 ...c2k

]
...

...

[
c(m−1)k+1 c(m−1)k+2 ...cmk

][
cmk+1 cmk+2 ...cmk+r

]
= [

u1

u0
]k[
u2

u1
]k...[

um
um−1

]k[
um+1

um
]r

=

[
(
u1

u0
)(
u2

u1
)...(

um
um−1

)(
um+1

um
)

]r[
(
u1

u0
)(
u2

u1
)...(

um−1

um−2
)(

um
um−1

)

]k−r
= (um+1)r(um)k−r,
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on simplification. Consequently, we get

det(T (k)
n (b, d, a)) =

[
det(T

(1)
m+1(b, d, a))

]r[
det(T (1)

m (b, d, a))

]k−r
=

[
det(Tm+1(b, d, a))

]r[
det(Tm(b, d, a))

]k−r
,

having used (6). �
It is to be noted that if n is divisible by m, and therefore r = 0, the last result
reduces to the form

det(T (k)
n (b, d, a)) =

[
det(Tn

k
(b, d, a))

]k
. (18)

For the sake of completeness, we need to compute Tm(b, d, a) and Tm+1(b, d, a)
in (13). To do this we may solve the difference equation in (16). For this
purpose, we have to consider the discriminant, ∆ which is given by:

∆ = d2 − 4ab. (19)

Three cases will be considered accordingly.

Case (i): ∆ > 0.
Case (ii): ∆ = 0.
Case (iii): ∆ < 0.

For Case (i), the solution of (16) is given by:

um = det(Tm(b, d, a)) =
1√
∆

(
αm+1 − βm+1

)
, (20)

where α = 1
2 (d+

√
∆) and β = 1

2 (d−
√

∆).
For Case (ii), we have:

um = det(Tm(b, d, a)) = (m+ 1)(
d

2
)m. (21)

Finally, for Case (iii), we get:

um = det(Tm(b, d, a)) =
−i√
−∆

(
δm+1 − µm+1

)
, (22)

where i =
√
−1, δ = 1

2 (d+ i
√
−∆) and µ = 1

2 (d− i
√
−∆).
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Summarizing, we have:

det(T (k)
n (b, d, a)) =



(
1√
∆

)k(
α

n
k +1 − β n

k +1

)k

, if r = 0 and ∆ > 0,

(n
k + 1)k(d

2 )n, if r = 0 and ∆ = 0,(
−i√
−∆

)k(
δ

n
k +1 − µn

k +1

)k

, if r = 0 and ∆ < 0,(
1√
∆

)k(
αm+2 − βm+2

)r(
αm+1 − βm+1

)k−r

, if r 6= 0 and ∆ > 0,

(m+ 2)r(m+ 1)k−r(d
2 )n, if r 6= 0 and ∆ = 0,(

−i√
−∆

)k(
δm+2 − µm+2

)r(
δm+1 − µm+1

)k−r

, if r 6= 0 and ∆ < 0.

(23)

Two interesting remarks are given in order:

Remark 2.1. If n < 2k, then we have m = 1 and r = n − k. Consequently,
for all values of ∆, we obtain:

det(T (k)
n (b, d, a)) = d2k−n(d2 − ab)n−k. (24)

Remark 2.2. By using De Moivre’s theorem Arfken (1985), we see that if
∆ < 0, then (22) can also be written in the form:

det(Tm(b, d, a)) =
2(ab)

m+1
2

√
−∆

sin(m+ 1)θ, (25)

where θ = arctan(
√
−∆
d ).

With the help of (23), we are now in a position to formulate the following
result:

Algorithm 2.1. (An algorithm for computing the determinant of T (k)
n (b, d, a)

in (12)).

To compute the determinant of T (k)
n (b, d, a) in (12), we may proceed as follows:

INPUT: Order of the matrix n, value of k, the values, a, b and d.
OUTPUT: The determinant of T (k)

n (b, d, a) in (12).
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Step 1: Find the values of m and r which satisfy n = mk + r.
Step 2: Set ∆ = d2 − 4ab.
Step 3: if ∆ > 0 then

Compute: α = 1
2 (d+

√
∆), β = 1

2 (d−
√

∆), and

det(T
(k)
n (b, d, a)) =

(
1√
∆

)k(
αm+2 − βm+2

)r(
αm+1 − βm+1

)k−r

.

elseif ∆ = 0 then
Compute: det(T

(k)
n (b, d, a)) = (m+ 2)r(m+ 1)k−r(d

2 )n.
else
Compute: δ = 1

2 (d+ i
√

∆), µ = 1
2 (d− i

√
∆), and

det(T
(k)
n (b, d, a)) =

(
−i√
−∆

)k(
δm+2 − µm+2

)r(
δm+1 − µm+1

)k−r

.

end if.
Algorithm 2.1 will be referred to as DETkTOEP-I.

3. A Modified Algorithm for Evaluating the
General n-th Order k-Tridiagonal Determinants

Following Sogabe and Yilmaz (2014), let n, k be natural numbers such that
n ≥ 3 and k = 1, 2, ..., n−1. For each values of n and k, consider the associated
set An = {1, 2, ..., n}. The equivalence class [p], p ∈ {1, 2, ..., k} is defined by:

[p] = {i ∈ An such that i ≡ p mod (k)}. (26)

For j = 1, 2, ..., k, let Nj denotes the number of elements of the equivalence
class [j]. Then we have

An =
⋃

p∈{1,2,...,k}

[p], (27)

[p] ∩ [q] = φ for p 6= q, p, q ∈ {1, 2, ..., k} (28)

and
k∑

j=1

Nj = n. (29)

For example, if n = 10 and k = 4, then we have the equivalence classes [1] =
{1, 5, 9}, [2] = {2, 6, 10}, [3] = {3, 7} and [4] = {4, 8}. Therefore N1 = N2 = 3
and N3 = N4 = 2. Very recently in Sogabe and Yilmaz (2014), the authors
constructed a numeric algorithm for evaluating general n-th order determinants
of k-tridiagonal type (Algorithm 1, p. 99). In fact this algorithm works properly
only if n ≥ 2k. The motivation of this section is therefore to modify this
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algorithm to work for n < 2k as well. We begin by noticing that if n < 2k,
then we have:

N1 = N2 = ... = Nn−k = 2 < 3 (30)

and
Nn−k+1 = Nn−k+2 = ... = Nk = 1 < 3. (31)

Additionally, if n = 2k, then n is necessarily even and Nj = 2 < 3, for
j = 1, 2, ..., k. For n > 2k, the value of N1 is at least 3. Armed with the above
results, we may formulate the following modified numeric algorithm which is
breakdown-free.

Algorithm 3.1. (A modification of Algorithm 1 in Sogabe and Yilmaz (2014),
p. 99, p= -1).

To compute the determinant of a general k-tridiagonal matrix in (7), we may
proceed as follows:
INPUT: Order of the matrix n, value of k and the values, ai, bi, i = 1, 2, . . . , n−
k, di, i = 1, 2, . . . , n.

OUTPUT: The determinant of T (k)
n in (7).

Step 1: if n ≤ 2k then
for j = 1, 2, ..., k do
fj = dj
if j ≤ n− k then
fj+k = dj+kfj − bjaj

end if
end do

else
compute N1, N2, ..., Nk

for j = 1, 2, ..., k do
fj = dj
fj+k = dj+kfj − bjaj
for i = 3, 4, ..., Nj do
fk(i−1)+j = dk(i−1)+jfk(i−2)+j−bk(i−2)+jak(i−2)+jfk(i−3)+j

end do
end do

end if

Step 2: Compute det(T
(k)
n ) =

k∏
s=1

fn−k+s.

For the special case where k = 1, we have n > 2k and Nk = N1 = n. In this
case the Algorithm 3.1 reduces to Algorithm 3 in Sogabe and Yilmaz (2014).
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For the n×n matrix, T (k)
n (b, d, a) of the form (12), the Algorithm 3.1 takes the

form:

Algorithm 3.2. (An algorithm for computing the determinant of T (k)
n (b, d, a)

in (12)).

To compute the determinant of T (k)
n (b, d, a) in (12), we may proceed as follows:

INPUT: Order of the matrix n, value of k, the values, a, b and d.
OUTPUT: The determinant of T (k)

n (b, d, a) in (12).
Step 1: Compute N1, N2, ..., Nk

for j = 1, 2, ..., k do
fj = d
fj+k = d fj − b a
for i = 3, 4, ..., Nj do
fk(i−1)+j = d fk(i−2)+j − b a fk(i−3)+j

end do
end do

Step 2: if n ≤ 2k then
det(T

(k)
n (b, d, a) = d2k−n (d2 − a b)n−k.

else

det(T
(k)
n (b, d, a)) =

k∏
s=1

fn−k+s.

end if.

Algorithm 3.2 will be referred to as DETkTOEP-II. The MATLAB codes
for the algorithms DETkTOEP-I and DETkTOEP-II are available from
the authors upon request.

4. Numerical Tests and Illustrative Examples

In this section we are going to consider some numerical tests and illustra-
tive examples. All experiments were carried out using MATLAB 7.10.0.499
(R2010a) on a PC with Intel(R) Core(TM) i7-3770 CPU processor.

Example 4.1. Consider the symmetric k-tridiagonal matrix, T (k)
n = [t̂ij ]

n
i,j=1

where

t̂ij =

 3, if i = j
−1, if |i− j| = k
0, otherwise.

Compute det(T
(k)
n ).
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Solution. We have d = 3, a = b = −1 and ∆ = d2 − 4ab = 5 > 0. We also
have α = 1

2 (3 +
√

5) = ( 1+
√

5
2 )2 and β = 1

2 (3 −
√

5) = ( 1−
√

5
2 )2. By applying

(23), we get:

det(T (k)
n (b, d, a)) =

(
1√
∆

)k(
αm+2 − βm+2

)r(
αm+1 − βm+1

)k−r

=

[(
1√
∆

)(
αm+2 − βm+2

)]r[(
1√
∆

)(
αm+1 − βm+1

)]k−r
=

(
F2m+3

)r(
F2m+1

)k−r

(32)

where the Fibonacci numbers, Fj in (32) are given by:

Fj =
1√
5

(
(
1 +
√

5

2
)j+1 − (

1−
√

5

2
)j+1

)
, j = 0,±1,±2, ... (33)

It is worth mentioned that 1+
√

5
2 is called the golden ratio Rosen (2000).

Example 4.2. Consider the k-tridiagonal matrix, T (k)
n = [t̂ij ]

n
i,j=1 for n =

20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, and k = 2 with

t̂ij =

 1.5 + h2, if i = j
1, if |i− j| = k
0, otherwise,

where h = 1
n .

The numerical results with DETkTOEP-II, MATLAB ′ det()′ built-in
function and DETkTOEP-I algorithm are given in Table 1. The mean value
of the CPU times (after 100 tests) in the computation of the determinant are
shown in Figure 1.

Example 4.3. Consider the k-tridiagonal matrix, T (k)
n = [t̂ij ]

n
i,j=1 for n =

1000, 5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000 and k = 3 given by

t̂ij =

 2, if i = j
1, if |i− j| = k
0, otherwise.
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Table 1: Numerical results of the determinants for Example 4.2

n DETkTOEP-I algorithm DETkTOEP-II algorithm MATLAB built-in function
20 2.282574412392193 2.282574412392195 2.282574412392195
50 0.010048080272980 0.010048080272980 0.010048080272980
100 1.275628131576196 1.275628131576192 1.275628131576192
200 1.033858646548643 1.033858646548663 1.033858646548665
500 1.191852582595496 1.191852582595514 1.191852582595517
1000 1.190676325073811 1.190676325073825 1.190676325073820
2000 1.381286295217381 1.381286295217223 1.381286295217232
5000 1.891450930105525 1.891450930104585 1.891450930104579
10000 2.285552570500651 2.285552570500804 2.285552570500802
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Figure 1: CPU times (after 100 tests), in Log scale, for Example 4.2.

Table 2: Numerical results of the determinants for Example 4.3

n DETkTOEP-I algorithm DETkTOEP-II algorithm MATLAB built-in function
1000 37371260 37371260 3.737125999999501e+7
5000 4.637967408000e+9 4.637967408000e+9 4.637967407995532e+9
10000 3.707037926000e+10 3.707037926000e+10 3.707037925958355e+10
15000 1.250750150010e+11 1.250750150010e+11 1.250750149990213e+11
20000 2.964296474080e+11 2.964296474080e+11 2.964296474030406e+11
25000 5.789120592600e+11 5.789120592600e+11 5.789120592374078e+11
30000 1.000300030001e+12 1.000300030001e+12 1.000300029951314e+12
35000 1.588371327408e+12 1.588371327408e+12 1.588371327317226e+12
40000 2.370903739260e+12 2.370903739260e+12 2.370903739125952e+12
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Figure 2: CPU times (after 100 tests), in Log scale, for Example 4.3

Table 2 gives the values of the determinant for different values of n. In each
case k = 3. Also Figure 2, gives the mean value of the CPU times (after 100
tests) in the computation of the determinant.

Example 4.4. Compute the determinant of the k-tridiagonal matrix T (k)
n given

by:

T (k)
n =


1 0 0 0 −1 0
0 −2 0 0 0 2
0 0 5 0 0 0
0 0 0 3 0 0
3 0 0 0 −1 0
0 −2 0 0 0 3

 .

Solution. Here k = 4, n = 6 < 2k. We are going to solve this example by
using two different methods:
Method 1: By using Algorithm 3.1, we obtain:
f1 = d1 = 1, f5 = d5 f1 − b1 a1 = 2, f2 = d2 = −2, f6 = d6 f2 − b2 a2 = −2,
f3 = d3 = 5 and f4 = d4 = 3. Consequently,

det(T (k)
n ) =

k∏
s=1

fn−k+s = f3 × f4 × f5 × f6 = (5)(3)(2)(−2) = −60.
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Method 2: Applying the k-DETGTRI algorithm El-Mikkawy (2012), yields:

det(T (k)
n ) =

6∏
s=1

cs = (1)(−2)(5)(3)(2)(1) = −60.

5. Concluding Remarks

In this paper, we have considered the determinant evaluation of n-th order
k-tridiagonal determinants having Toeplitz structure. Test results indicate the
superiority of the new algorithm relative to the MATLAB built-in function and
the DETkTOEP-II algorithm of the present paper.

Acknowledgement

The authors wish to thank anonymous referees and the editorial board of
the MJMS for careful reading and useful comments that enhanced the quality
of this paper.

References

Aiat, H. D. and Elouafi, M. (2008). A fast numerical algorithm for the inverse of
a tridiagonal and pentadiagonal matrix. Appl. Math. Comput., 202:441–445.

Arfken, G. (1985). Mathematical methods for physics, 3rd ed. Orlando, Aca-
demic Press.

Asci, M., Tasci, D., and El-Mikkawy, M. (2012). On determinants and perma-
nents of k-tridiagonal toeplitz matrices. Util. Math., 89:97–106.

Borowska, J., Lacinska, L., and Rychlewska, J. (2013). On determinant of
certain pentadiagonal matrix. J. Appl. Math. Comput. Mech., 12(3):21–26.

Burden, R. and Faires, J. (2001). Numerical analysis, 7th Edition. Books &
Cole Publishing, Pacific Grove, CA.

El-Mikkawy, M. (2003). A note on a three-term recurrence for a tridiagonal
matrix. Appl. Math. Comput., 139:503–511.

El-Mikkawy, M. (2004a). A fast algorithm for evaluating nth order tri-diagonal
determinants. J. Comput. Appl. Math., 166:581–584.

Malaysian Journal of Mathematical Sciences 363



Moawwad El-Mikkawy & Faiz Atlan

El-Mikkawy, M. (2004b). On the inverse of a general tridiagonal matrix. Appl.
Math. Comput., 150:669–679.

El-Mikkawy, M. (2012). A generalized symbolic thomas algorithm. Applied
Mathematics, 3(4):342–345.

El-Mikkawy, M. and Atlan, F. (2014a). Algorithms for solving linear systems
of equations of tridiagonal type via transformations. Applied Mathematics,
5:413–422.

El-Mikkawy, M. and Atlan, F. (2014b). A novel algorithm for inverting a
general k-tridiagonal matrix. Appl. Math. Lett., 32:41–47.

El-Mikkawy, M. and Karawia, A. (2006). Inversion of general tridiagonal ma-
trices. Appl. Math. Lett., 19:712–720.

El-Mikkawy, M. and Rahmo, E. (2008). A new recursive algorithm for inverting
tridiagonal and anti-tridiagonal matrices. Appl. Math. Comput., 204:368–
372.

El-Mikkawy, M. and Sogabe, T. (2010). A new family of k-fibonacci numbers.
Appl. Math. Comput., 215:4456–4461.

Hager, W. (1988). Applied numerical linear algebra. Prentice-Hall International
Editions, Englewood Cliffs, NJ.

Huang, Y. and McColl, W. (1997). Analytic inversion of general tridiagonal
matrices. J. Phys. A., 30:7919–7933.

Jia, J., Sogabe, T., and El-Mikkawy, M. (2013). Inversion of k-tridiagonal
matrices with toeplitz structure. Comput. Math. Appl., 65:116–125.

Kilic, E. (2008a). Explicit formula for the inverse of a tridiagonal matrix by
backward continued fractions. Appl. Math. Comput., 197:345–357.

Kilic, E. (2008b). On a constant-diagonals matrix. Appl. Math. Comput.,
204:184–190.

Lewis, J. (1982). Inversion of the tridiagonal matrices. Numer. Math., 38:333–
345.

Mallik, R. (2001). The inverse of a tridiagonal matrix. Linear Algebr. Appl.,
325:109–139.

Ran, R.-S., Huang, T.-Z., Liu, X.-P., and Gu, T.-X. (2009). An inversion algo-
rithm for general tridiagonal matrix. Appl. Math. Mech.-Engl. Ed., 30:247–
253.

364 Malaysian Journal of Mathematical Sciences



A Fast and Reliable Algorithm for Evaluating n-th Order k-Tridiagonal Determinants

Rosen, K. (2000). Handbook of discrete and combinatorial mathematics. CRC
Press, Boca Raton, FL.

Sogabe, T. and El-Mikkawy, M. (2011). Fast block diagonalization of k-
tridiagonal matricess. Appl. Math. Comput., 218:2740–2743.

Sogabe, T. and Yilmaz, F. (2014). A note on a fast breakdown-free algorithm for
computing the determinants and the permanents of k-tridiagonal matrices.
Appl. Math. Comput., 249:98–102.

Yalciner, A. (2011). The lu factorization and determinants of the k-tridiagonal
matrices. Asian-European J. Math., 4:187–197.

Yamamoto, T. (2001). Inversion formulas for tridiagonal matrices with ap-
plications to boundary value problems. Numer. Funct. Anal. and Optimiz.,
22:357– 385.

Yilmaz, F. and Sogabe, T. (2014). A note on symmetric k-tridiagonal matrix
family and the fibonacci. Int. J. Pure and Appl. Math., 96(2):289–298.

Malaysian Journal of Mathematical Sciences 365


	Introduction
	Main Results
	A Modified Algorithm for Evaluating the General n-th Order k-Tridiagonal Determinants
	Numerical Tests and Illustrative Examples
	Concluding Remarks

